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Abstract

Effects of micromeritic properties (bulk, tapped and particle density, particle size and shape) on the flow rate through

circular orifices are investigated, for three pharmaceutical excipients (Lactose, Emcompress and Starch) separated in

four sieve fractions, and are modeled with the help of artificial neural networks (ANNs). Eight variables were selected

as inputs and correlated by applying the Spearman product-moment correlation matrix and the visual component

planes of trained Self-Organizing Maps (SOMs). Back-propagation feed-forward ANN with six hidden units in a single

hidden layer was selected for modeling experimental data and its predictions were compared with those of the flow

equation proposed by Jones and Pilpel (1966). It was found that SOMs are efficient for the identification of co-linearity

in the input variables and the ANN is superior to the flow equation since it does not require separate regression for each

excipient and its predictive ability is higher. Besides the orifice diameter, most influential and important variable was

the difference between tapped and bulk density. From the pruned ANN an approximate non-linear model was

extracted, which describes powder flow rate in terms of the four network’s input variables of the greatest predictive

importance or saliency (difference between tapped and bulk density (x2), orifice diameter (x3), circle equivalent particle

diameter (x4) and particle density (x8)):

W �b0�fa1[1�exp(b2x2�b3x3�b4x4�b8x8)]�1�a2[1�exp(b?3x3�b?8x8)]�1g:

# 2002 Elsevier Science B.V. All rights reserved.

Keywords: Artificial neural networks (ANNs); Powder flow rate; Self organizing maps (SOMs); Pharmaceutical excipients

1. Introduction

Flowability of powders is important for several

processes involved in pharmaceutical formulation,

such as storage, transfer, fluidization, blending,

capsule filling and tableting.

Powder flowability depends on variables related

to the material properties (particle size, shape,

density, moisture content etc) or to the operator

(equipment and handling, such as hopper width,

wall angle, orifice diameter, storage time at rest

and vibration before or during the flow). For the

evaluation of powder flowability several methods
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have been used, either indirect (based on tapped
density and angular properties) or direct (based on

discharging rate through an orifice) by using more

or less sophisticated equipment that can mimic the

condition of real processing (de Greve et al., 1986).

Since large number of variables may affect powder

flow and for the description of these effects there

are no simple relations based on first principles,

the prediction of flow becomes difficult. For the
pharmaceutical granulations an empirical, non-

linear equation has been suggested by Jones and

Pilpel (1966), which was derived from an earlier

equation of Brown and Richards (1965). This

equation directly relates the mass flow rate (W )

with the diameter of the orifice (DO) and the bulk

density (rb) of the powder, but indirectly with

other important material and operator variables:

DO�A

�
4W

60p(rb)
ffiffiffi
g

p
�1=n

(1)

where g is the gravitational constant and A and n

are coefficients. Eq. (1) has the drawback of

comprising in two coefficients (A and n) the

effects of many variables (material or operators)

and, therefore, should not apply to powders of a
wide particle size distribution and/or differing in

particle shape characteristics.

Recent developments in artificial neural net-

works (ANNs) may provide a powerful tool for

the analysis and description of non-linear systems,

such as flow of powders (Bourquin et al., 1998a,b;

Basheer and Hajmeer, 2000) and Self-Organizing

Maps (SOMs) have been employed for the classi-
fication of powder flowability and prediction of

weight variation of tablets (Antikainen et al.,

2000).

In the present study, the effects of the micro-

meritic properties (bulk, tapped and particle

density, particle size and shape) on the flow rate

through circular orifices are investigated, for three

common pharmaceutical excipients separated in
four sieve fractions, and are modeled with the help

of ANNs and SOMs. SOMs are employed as an

alternative to the Spearman product-moment

correlation matrix for correlating the input vari-

ables. Experimental data of flow rate are obtained

with orifices of different diameter and modeled

with the help of a back-propagation feed-forward
ANN and flow rate predictions are compared with

those of Eq. (1). Causal and predictive importance

(‘sensitivity’ or ‘saliency’, respectively) of the input

variables is evaluated (Tetko et al., 1996; Sarle,

2000) and an approximate non-linear model de-

scribing the powder flow rate is extracted from the

pruned ANN.

2. Materials and methods

2.1. Materials

Dicalcium phosphate dihydrate (Emcompress,

Edward Mendell, NY, USA), Lactose (Svenska

Mjolkhscocher AB, Sweden) and Starch (Colorcon
Ltd., Orpington, UK) were used after classifica-

tion by sieving in four fractions: 90�/125, 125�/150,

150�/180 and 180�/250 mm.

2.2. Micromeritic properties of powders

Particle size and shape was characterized by an

image analysis system (Quantimet 500, Leica,

Cambridge, England). At least 300 particles were
measured in four optical fields of samples dis-

persed in paraffin oil. Particle size was expressed

as equivalent circle diameter (CED) and shape as

aspect ratio (ratio of maximum to minimum Feret

diameter), roundness (/Perimeter2=4�p�Area�
1:064) and convexity (ratio of projection perimeter

to the perimeter of the circumscribed convex

polygon). Particle density (rp) was measured on
an air comparison pycnometer (Beckman, Model

930) and loose bulk (rb) and tapped (rt) density in

a 50 ml cylinder by using a J. Engelsmann

volumeter, (Model JEL ST 2, Germany).

2.3. Flow rate measurement

A specially constructed flow meter was used. It
consisted of a metallic frame supporting a hor-

izontally rotating aluminum disc (2 mm thick, with

circular orifices of different diameter), a metallic

orifice-shutter operating by pulling a lever and a

glass tube as hoper (35 cm long and 4 cm internal

diameter) vertically mounted upon the metallic
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disk. Rotating of the disk allowed quick change of
the orifice and its justification in relation to the

hopper. The apparatus consisted only of glass and

metal and was earthed, in order to avoid electro-

static charging.

The flow-meter was operated manually (by

pulling the lever of orifice shutter) and the powder

was allowed to discharge directly upon an electro-

nic balance (A&D Ltd., Japan) connected to a
computer, through an RS232 serial communica-

tion interface, for monitoring the mass of dis-

charged powder. Data were collected with the help

of Windmill serial communication software

(Windmill, UK) and transferred to MS EXCEL.

Powder flow rate was estimated from the slope of

mass versus time plots and expressed as g s�1.

2.4. Data modeling

The Stuttgart Neural Network Simulator (SNNS,

VER. 4.2 for WIN32) was employed and feed-

forward back-propagation networks were applied

for the modeling and prediction of the flow rate.

Also, the flow equation (Eq. (1)) was fitted to the

experimental data by regression analysis and its

predictive ability compared with those of ANN
models. All statistical computations were per-

formed using the SPSS VER. 9 statistical software

package (SPSS Inc. Chicago, IL, USA).

Eight variables were selected as inputs to the

network: (1) bulk density, rb, (2) difference

between bulk and tapped densities, rt�/rb, (3)

orifice diameter, DO, (4) particle size, CED, (5)

aspect ratio, (6) roundness, (7) convexity and (8)
particle density. The corresponding particle den-

sity represented the excipient nature, so that no

categorical variables were included as inputs. The

measured particle mean diameter (CED) was used

instead of the nominal sieve size fraction, to

improve correlation. The correlation matrix of

the input variables was constructed based on the

Spearman product-moment correlation and com-
pared with the visual component planes in trained

SOMs. They were obtained by using a public-

domain program, the SOM toolbox (available for

download at http://www.cis.hut.fi/projects/som-

toolbox/), implemented using MATLAB code

(Mathworks Inc., USA). Then, a feed-forward

network that relies on the back-propagation of
error algorithm was developed as equivalent to

multivariate multiple non-linear regression (Sarle,

1994).

The experimental flow rate data comprised a

3�/4�/4 full factorial design, replicated three

times (144 experiments). The factors were exci-

pient’s nature (as particle density, at three levels),

sieve fraction (as measured CED, at four levels)
and diameter of the orifice (four levels).

2.4.1. Network training

Two advanced variants of back-propagation

were employed, the resilient propagation (Rprop)

and the Rprop with maximum-posterior approach

(Rprop-MAP). The latter algorithm does not

require a validation set, leaving more data points

available for training and testing the network. The
training set was representing the whole experi-

mental region since it was based on statistical

design (Wu et al., 1996). One third of the experi-

mental data (48 measurements) was used for

training and the remaining for validation and

testing (48 measurements in each, from replicates).

Networks of eight inputs and one output, contain-

ing from two to 18 hidden units in one, two and
three layers were tested. Linear activation function

was selected for input and output units and logistic

sigmoid function for the hidden units. The input

and output patterns were scaled in the interval [0,

1] with 10% headroom, where the sigmoid function

operates in the more linear region (Murtoniemi et

al., 1994). The ‘early stopping’ method was applied

to check for possible network over-training (mem-
orization of the noise, not just the signal, in the

training patterns) and degradation of network

performance. Training was stopped at 500, 1000,

3000, 5000 and 10 000 cycles and the correlation

coefficient of the target flow rate values versus the

network prediction was calculated as a measure of

its predictive performance. After training, pruning

(size reduction) was performed in order to simplify
the neural network model, improve its generalizing

ability and extract an approximate regression

equation relating powder flow rate to the most

important micromeritic properties. The Magni-

tude-Based Pruning algorithm was used, selected

as the simplest pruning method (Seemann et al.,
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1997). A 0.5% error increase and an error sum of
square (SSE) of 0.004 were tolerated and training

whilst pruning was performed for 100 cycles.

2.4.2. Ranking of input variables

Causal and predictive importance (‘sensitivity’
or ‘saliency’, respectively) of the input variables

was evaluated in order to understand the under-

lying mechanisms of their effects on the powder

flow. The modified link-weight-magnitude ap-

proach for non-linear relations was selected for

the case of ‘sensitivity’ (Tetko et al., 1996).

Regarding ‘saliency’ setting mean values of the

inputs and retraining of the network was employed
(Sarle, 2000).

3. Results and discussion

Micromeritic properties of the fractionated ex-

cipients that were considered as inputs of the ANN

are listed in Tables 1 and Table 2 are summarized

the experimental results of flow rate.

From Table 2 it can be seen that flow rate

increases with the size of the orifice employed, as

expected, and shows great variability between

excipients. Also, the flow rate increases in general
with the particle size increase, except of the larger

particle size fraction of lactose (for all the orifices

employed) and of Emcompress (for the smallest

orifice of 0.5 cm). This flow rate decrease should
be attributed to partial blocking of the orifice due

to formation of more stable powder arches, while

the variability between excipients should be related

to micromeritic properties not considered in the

experimental design, such as density (bulk, tapped

and particle), particle shape and surface rough-

ness.

3.1. Fitting of the flow equation

Predictive ability of flow equation (Eq. (1)) or of
the modified version in which particle density

replaced the bulk density (Jones and Pilpel, 1966)

is summarized in Table 3, estimated by linear

regression analysis of ln(4W=60prb

ffiffiffi
g

p
) or

ln(4W=60prP

ffiffiffi
g

p
)/and ln(DO). Results are given

irrespective of particle size, for each diluent and

for all the three diluents (using rb or rp). From
Table 3 it is seen that fitting is relatively good for

each diluent separately (high correlation coeffi-

cients), the predictive ability of Eq. (1) for flow

rate is satisfactory (low values of PRESS) and the

value of the exponent is very close to the theore-

tical (n�/2.5). Taking a closer look at the values of

the regression parameters we can see that the

predictive ability of Eq. (1) decreases in the order:
Emcompress�/Starch�/Lactose. Comparing the

regression parameters (Table 3) and the micro-

meritic properties (Table 1) we can see that for the

Table 1

Micromeritic properties of the fractionated excipients

Excipient Sieve fraction (mm) Density (g cm�3) Particle diameter CED (mm) Aspect ratio Roundness Convexity

Bulk rb Tap-bulk rt�/rb

Emcompress 90�/125 0.847 0.086 70 1.68 1.43 1.28

�/ 125�/150 0.826 0.119 146 1.44 1.37 1.11

�/ 150�/180 0.833 0.103 163 1.42 1.36 1.13

�/ 180�/250 0.844 0.109 208 1.41 1.41 1.14

Lactose 90�/125 0.842 0.119 22 2.11 1.57 1.29

�/ 125�/150 0.737 0.074 115 1.62 1.33 1.20

�/ 150�/180 0.727 0.078 145 1.46 1.36 0.12

�/ 180�/250 0.712 0.061 223 1.45 1.32 1.13

Starch 90�/125 0.646 0.109 85 1.50 1.31 1.09

�/ 125�/150 0.658 0.103 116 1.51 1.27 1.07

�/ 150�/180 0.674 0.100 138 1.47 1.29 1.08

�/ 180�/250 0.663 0.090 215 1.52 1.34 1.10

Particle density was: 2.39 for emcompress, 1.54 for lactose and 1.50 (g cm�3) for starch.
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different sieve fraction of Lactose, the micromeri-

tic properties (especially the difference between

tapped and bulk density (rb�/rt) and aspect ratio)

show the greatest variations, followed for those of

Emcompress and Starch. Such variations should

be the possible reason of the decrease in the

predictive ability of Eq. (1), since only bulk and

particle density were considered. Regression ana-

lysis for all the three diluents (combined data) gave

lower correlation coefficient (0.867 and 0.842

when bulk or particle density is considered,

respectively). This means low general applicability

of Eq. (1) or existence of limitations concerning

the particle density, size and shape. Therefore,

different regression equations have to be used for

different materials or even for the same material

but for fractions of different particle size or shape.

Thus the suggestion of a neural network model

taking into account density, size and shape char-

acteristics is justified.

3.2. Correlation of the input variables

Correlation of the micromeritic properties as

input variables or screening of redundant inputs is

presented in Table 4 as the Pearson product-

moment correlation matrix and in Fig. 1 as

component planes obtained with SOMs, in which

Table 2

Experimental results of flow rate measurement through circular orifices of different diameter

Sieve fraction (mm) Orifice diameter (cm) Flow rate of excipients (g s�1)

Emcompress (mean9/S.D.) Lactose (mean9/S.D.) Starch (mean9/S.D.)

90�/125 1.8 45.19/1.4 61.19/1.6 27.59/2.4

125�/150 1.8 57.69/2.4 230.79/3.2 34.09/2.9

150�/180 1.8 57.39/1.1 256.39/2.7 42.29/2.2

180�/250 1.8 60.19/1.7 236.79/1.9 52.99/4.9

90�/125 1.5 31.59/2.9 69.39/2.0 20.49/1.1

125�/150 1.5 37.49/1.1 124.79/4.7 24.29/2.4

150�/180 1.5 39.49/0.1 161.59/2.0 26.39/1.0

180�/250 1.5 40.39/0.3 152.89/2.6 28.89/2.5

90�/125 1.0 10.89/0.3 19.59/1.9 7.29/0.1

125�/150 1.0 12.69/0.1 54.09/2.2 8.69/0.1

150�/180 1.0 12.79/0.1 55.99/0.6 9.29/0.2

180�/250 1.0 13.19/0.2 54.09/0.3 10.39/0.1

90�/125 0.5 1.879/0.05 3.839/0.29 1.209/0.01

125�/150 0.5 2.049/0.01 8.979/0.08 1.479/0.01

150�/180 0.5 2.019/0.01 8.959/0.24 1.549/0.01

180�/250 0.5 1.979/0.01 8.029/0.01 1.649/0.01

Table 3

Results of the linear regression analysis of ln(4W=60pr+
ffiffiffi
g

p
) vs. the logarithm of orifice diameter, ln(DO)

Regression summary Emcompress Lactose Starch Combined data

Using rb Using rp

R 0.997 0.931 0.990 0.867 0.842

PRESS 0.050 1.150 0.180 5.990 7.000

R2
pred 0.994 0.852 0.977 0.270 0.699

Intercept (lnA ) 0.013 �/0.437 0.057 �/0.092 0.156

Inverse slope (n ) 2.634 2.932 2.597 3.419 3.624

Correlation coefficient (R ), prediction error sum of squares (PRESS), prediction correlation coefficient (R2
pred), and equation

constants: intercept (ln A ) and inverse slope (n ). r�, bulk density; rb, differing for each size fraction or particle density; rp, differing

for each diluent.

K. Kachrimanis et al. / International Journal of Pharmaceutics 250 (2003) 13�/23 17



similar color indicates homogeneous regions of

similar values.
From Table 4, it can be seen that bulk density is

correlated to particle density (correlation coeffi-

cient 0.80) and to roundness as well (correlation

coefficient 0.75). Furthermore, roundness is corre-

lated to aspect ratio (0.78) and aspect ratio is

correlated to particle size (0.75). The correlation

coefficients are relatively low (B/0.95) and very

similar and, therefore, none of the correlated

variables could be omitted from the network.

Also, from the component planes (Fig. 1) it can

be seen clearly that bulk and particle density

present the most similar patterns (high correla-

tion), followed by roundness and aspect ratio.

Some similarity is evident between bulk density

and roundness, and between aspect ratio and

particle size (CED). Consequently it is possible

to rank the correlated variables on the basis of

SOM similarity, though this cannot be expressed
quantitatively. Comparing the correlation matrix

(Table 4) with the more easily perceivable by the

human brain visual presentation (Fig. 1), it is more

clearly visible that no variable is correlated enough

to be omitted from the network. Therefore, the

visual inspection of SOMs is much more informa-

tive than the numerical matrix and seems to be

advantageous justifying its use.

3.3. Artificial neural network modeling

The training and validation of networks, with

different number of hidden layers and units, after

1500 cycles, employing the Rprop algorithm, is
presented in Table 5 as mean square error (MSE).

The limit of 1500 training cycles was selected

because the validation error did not decrease

substantially upon further training. From Table

Fig. 1. Component planes of the input variables obtained with SOMs.
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5, a network with six hidden units in one layer

(Fig. 2a) was chosen for further evaluation, since

the addition of more hidden layers does not seem

to improve the network’s performance. The net-

work was also trained with the RpropMAP

algorithm and its predictive ability (correlation

coefficient, R , of the target flow rate values vs. the

network prediction) was compared with that of the

Rprop algorithm, after increasing number of

training cycles. The results are listed in Table 6.
From the R values, Table 6, it can be seen that

both training algorithms perform equally well and

comparison to those corresponding to the predic-

tive ability of the flow equation shows that the

performance of the selected neural network model

is better than that of Eq. (1). Furthermore, the

network is not over-trained even after several

thousands training cycles. On the contrary, its

predictive ability improves, at least up to 10 000

training cycles (Table 6). Taking into account the

rather small size of the training set (48 data

points), over-training of the network is possible,

but as we can see from Table 2 the flow rate

standard deviation is very small (B/5 g s�1 or

relative S.D. B/10%) and, therefore, there is very

little noise in the data and nothing to over-train.

Also, the structures of the training set and the test

set are similar, since they are replications of the

same factorial design. All the above combined with

the small network size consist good reasons for

absence of over-training of the neural network

model even after 10 000 training cycles.

The developed neural network model has the

additional advantage over Eq. (1), that it can be

used for flow rate prediction of all three excipients

employed, since a parameter representing excipient

type quantitatively (particle density) is used as

input variable. In the contrary Eq. (1) requires a

separate regression model for each excipient.

Taking into account that the neural network

utilizes only part of the total available data for

training, and that it is not sensitive to over-training

even after long training, it can be concluded that it

is superior to Eq. (1) from more than one view-

point. The superiority of the neural network model

is attributed to its complex non-linear structure,

since feed-forward back-propagation networks areT
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equivalent to multiple non-linear regression mod-
els.

3.4. Importance of input variables

The calculated values for causal importance

(sensitivity) and predictive importance (saliency)

of the input variable are presented in Table 7.

Causal importance refers to the change of the

output corresponding to a given change in an

input variable, while predictive importance refers

to the increase in the error function when an input

is omitted from the network (Sarle, 2000). From
Table 7 it can be seen that the values of sensitivity

and saliency do not coincide and show that the

difference between tapped and bulk density (rt�/

rb) is the most influential variable, closely fol-

lowed by orifice diameter. Particle density and

aspect ratio come next in sensitivity, while the rest

of the variables are of minor importance.

Regarding the predictive importance (saliency),
orifice diameter is by far the most important

variable, followed by the difference between

tapped and bulk density, the particle density and

the size. The rest of the variables play no

important role in prediction and could be omitted

from the network.

3.5. Extraction of approximate non-linear model

Taking into account the importance evaluation

of the input variables (sensitivity and saliency),

four hidden units were removed from the network

and three inputs (bulk density, orifice diameter

and particle density) were connected to both the

remaining. The topology of the trained neural

network after pruning by the Magnitude-Based
algorithm is depicted in Fig. 2(b). The correlation

coefficient of the predicted by the network values

versus the target flow rate values was 0.980 for the

pruned version. This shows that the ANN model

preserved its predictive performance, while it was

greatly simplified by removing unnecessary units

and links.

From the pruned neural network, it is easier to
extract an approximate model for the description

of powder flow rate in terms of the network’s input

variables. Considering that the input and output

layers use the linear activation function, while the

hidden layer uses the sigmoid activation function,

the equation expressing the initial ANN model

before pruning (Fig. 2a) can be written as follows:

W �b0�
X6

i�1

ai

�
1�exp

�X8

j�1

bijxj

���1

(2)

where W is the output node (flow rate), xj are the

input variables, ai represents the weights relating

the six hidden nodes to the output node, and bij

represents the weights relating the eight input

nodes to the six hidden nodes. Then, taking into

account only the four variables with the greatest
saliency (tapped-bulk density, x2, orifice diameter,

x3, particle diameter, x4, and particle density, x8)

and the pruned links between inputs and hidden

units, the Eq. (2) model can be refined as follows:

W �b0

�fa1[1�exp(b2x2�b3x3�b4x4�b8x8)]�1

�a2[1�exp(b?3x3�b?8x8)]�1g (3)

which is an approximate non-linear model that can

be fitted to the flow rate data of all excipients by

multiple non-linear regression.

Table 5

Mean square error (MSE) of training and validation for

networks with eight inputs, one output and different number

of hidden layers and units in each layer, after 1500 training

cycles with the Rprop algorithm

Hidden layers Units in each layer Mean square error

(MSE�/104) of

Training Validation

1 2 2.27 27.7

1 4 1.43 27.5

1 6 1.21 27.3

1 8 1.75 28.6

1 10 1.30 27.3

1 12 1.24 28.1

1 14 1.50 27.3

1 16 1.49 26.8

1 18 0.86 28.1

2 6 1.45 26.8

3 6 1.01 27.0
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Fig. 2. Topology of the trained neural networks, (a) before and (b) after the pruning by the magnitude-based algorithm.
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4. Conclusions

The suggested ANN model is superior to the

flow equation (Eq. (1)), since its predictive ability

is higher and does not require separate regression

for each excipient. Besides the orifice diameter,

most influential and predictive variable is the

difference between tapped and bulk density (rt�/

rb) and the SOM networks have been efficient

tools for the evaluation of input variables and

identification of their co-linearity. Taking into

account the four variables with the greatest pre-

dictive importance or saliency (tapped-bulk den-

sity (x2), orifice diameter (x3), circle equivalent

particle diameter (x4) and particle density (x8)), an

approximate non-linear model has been extracted:

W �b0

�fa1[1�exp(b2x2�b3x3�b4x4�b8x8)]�1

�a2[1�exp(b?3x3�b?8x8)]�1g
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